datasheetbank_Logo
Integrated circuits, Transistor, Semiconductors Search and Datasheet PDF Download Site

SC28L92 View Datasheet(PDF) - NXP Semiconductors.

Part Name
Description
View to exact match
SC28L92 Datasheet PDF : 73 Pages
First Prev 11 12 13 14 15 16 17 18 19 20 Next Last
NXP Semiconductors
SC28L92
3.3 V/5.0 V Dual Universal Asynchronous Receiver/Transmitter
If CTS option is enabled (MR2[4] = 1), the CTS input at IP0 or IP1 must be LOW in order
for the character to be transmitted. The transmitter will check the state of the CTS input at
the beginning of each character transmitted. If it is found to be HIGH, the transmitter will
delay the transmission of any following characters until the CTS has returned to the LOW
state. CTS going HIGH during the serialization of a character will not affect that character.
The transmitter can also control the RTSN outputs, OP0 or OP1 via MR2[5]. When this
mode of operation is set, the meaning of the OP0 or OP1 signals will usually be end of
message. See description of bit MR2[5] in Table 30 “MR2A - Mode Register 2 channel A
(address 0x0) bit description” for more detail. This feature may be used to automatically
turn around a transceiver in simplex systems.
6.3.2 Receiver
The SC28L92 is conditioned to receive data when enabled through the command register.
The receiver looks for a HIGH-to-LOW (mark-to-space) transition of the start bit on the
RxD input pin. If a transition is detected, the state of the RxD pin is sampled each 16×
clock for 7 clocks to 12 clocks (16× clock mode) or at the next rising edge of the bit time
clock (1× clock mode). If RxD is sampled HIGH, the start bit is invalid and the search for a
valid start bit begins again. If RxD is still LOW, a valid start bit is assumed and the receiver
continues to sample the input at one bit time intervals at the theoretical center of the bit,
until the proper number of data bits and parity bit (if any) have been assembled, and one
stop bit has been detected. The least significant bit is received first. The data is then
transferred to the receive FIFO and the RxRDY bit in the SR is set to a 1. This condition
can be programmed to generate an interrupt at OP4 or OP5 and INTRN. If the character
length is less than 8 bits, the most significant unused bits in the Rx FIFO are set to zero.
After the stop bit is detected, the receiver will immediately look for the next start bit.
However, if a non-zero character was received without a stop bit (framing error) and RxD
remains LOW for one half of the bit period after the stop bit was sampled, then the
receiver operates as if a new start bit transition had been detected at that point (one-half
bit time after the stop bit was sampled).
The parity error, framing error and overrun error (if any) are strobed into the SR from the
next byte to be read from the Rx FIFO. If a break condition is detected (RxD is LOW for
the entire character including the stop bit), a character consisting of all zeros will be
loaded into the Rx FIFO and the received break bit in the SR is set to 1. The RxD input
must return to HIGH for two (2) clock edges of the X1 crystal clock for the receiver to
recognize the end of the break condition and begin the search for a start bit.
This will usually require a HIGH time of one X1 clock period or 3 X1 edges since the
clock of the controller is not synchronous to the X1 clock.
6.3.3 Transmitter reset and disable
Note the difference between transmitter disable and reset. A transmitter reset stops
transmitter action immediately, clears the transmitter FIFO and returns the idle state. A
transmitter disable withdraws the transmitter interrupts but allows the transmitter to
continue operation until all bytes in its FIFO and shift register have been transmitted
including the final stop bits. It then returns to its idle state.
SC28L92_7
Product data sheet
Rev. 07 — 19 December 2007
© NXP B.V. 2007. All rights reserved.
19 of 73
 

Share Link: 

datasheetbank.com [ Privacy Policy ] [ Request Datasheet ] [ Contact Us ]