datasheetbank_Logo
Integrated circuits, Transistor, Semiconductors Search and Datasheet PDF Download Site

MMBD701LT1 View Datasheet(PDF) -

Part Name
Description
View to exact match
MMBD701LT1
 
MMBD701LT1 Datasheet PDF : 0 Pages
MBD701 MMBD701LT1
INFORMATION FOR USING THE SOT–23 SURFACE MOUNT PACKAGE
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS
Surface mount board layout is a critical portion of the
total design. The footprint for the semiconductor packages
must be the correct size to insure proper solder connection
0.037
0.95
interface between the board and the package. With the
correct pad geometry, the packages will self align when
subjected to a solder reflow process.
0.037
0.95
0.035
0.9
0.079
2.0
0.031
0.8
SOT–23
inches
mm
SOT–23 POWER DISSIPATION
The power dissipation of the SOT–23 is a function of the
pad size. This can vary from the minimum pad size for
soldering to a pad size given for maximum power dissipa-
tion. Power dissipation for a surface mount device is deter-
mined by TJ(max), the maximum rated junction tempera-
ture of the die, RθJA, the thermal resistance from the
device junction to ambient, and the operating tempera-
ture, TA. Using the values provided on the data sheet for
the SOT–23 package, PD can be calculated as follows:
PD =
TJ(max) – TA
RθJA
The values for the equation are found in the maximum
ratings table on the data sheet. Substituting these values
into the equation for an ambient temperature TA of 25°C,
one can calculate the power dissipation of the device
which in this case is 225 milliwatts.
PD =
150°C – 25°C
556°C/W
= 225 milliwatts
The 556°C/W for the SOT–23 package assumes the use
of the recommended footprint on a glass epoxy printed
circuit board to achieve a power dissipation of 225 milli-
watts. There are other alternatives to achieving higher
power dissipation from the SOT–23 package. Another
alternative would be to use a ceramic substrate or an
aluminum core board such as Thermal Clad. Using a
board material such as Thermal Clad, an aluminum core
board, the power dissipation can be doubled using the
same footprint.
SOLDERING PRECAUTIONS
The melting temperature of solder is higher than the
rated temperature of the device. When the entire device
is heated to a high temperature, failure to complete
soldering within a short time could result in device
failure. Therefore, the following items should always be
observed in order to minimize the thermal stress to which
the devices are subjected.
Always preheat the device.
The delta temperature between the preheat and
soldering should be 100°C or less.*
When preheating and soldering, the temperature of
the leads and the case must not exceed the maximum
temperature ratings as shown on the data sheet.
When using infrared heating with the reflow
soldering method, the difference shall be a maximum
of 10°C.
The soldering temperature and time shall not exceed
260°C for more than 10 seconds.
When shifting from preheating to soldering, the
maximum temperature gradient shall be 5°C or less.
After soldering has been completed, the device
should be allowed to cool naturally for at least three
minutes. Gradual cooling should be used as the use
of forced cooling will increase the temperature
gradient and result in latent failure due to mechanical
stress.
Mechanical stress or shock should not be applied
during cooling.
* Soldering a device without preheating can cause exces-
i h lh k d
hi h
li d
http://onsemi.com
3
 

Share Link: 

datasheetbank.com [ Privacy Policy ] [ Request Datasheet ] [ Contact Us ]