datasheetbank_Logo   Integrated circuits, Transistor, Semiconductors Search and Datasheet PDF Download Site
Part Name :   

ADM1030ARQ View Datasheet(PDF) - Analog Devices

Part NameDescriptionManufacturer
ADM1030ARQ Intelligent Temperature Monitor and PWM Fan Controller ADI
Analog Devices ADI
ADM1030ARQ Datasheet PDF : 28 Pages
First Prev 11 12 13 14 15 16 17 18 19 20 Next Last
asserted low. The behavior of the high limit and THERM limit
is as follows:
1. Whenever the temperature measured exceeds the high tem-
perature limit, the INT pin is asserted low.
2. If the temperature exceeds the THERM limit, the THERM
output asserts low. This can be used to throttle the CPU
clock. If the THERM-to-Fan Enable bit (Bit 7 of THERM
behavior/revision register) is cleared to 0, the fan will not run
full-speed. The THERM limit may be programmed at a
lower temperature than the high temperature limit. This
allows the system to run in silent mode, where the CPU can
be throttled while the cooling fan is off. If the temperature
continues to increase, and exceeds the high temperature limit,
an INT is generated. Software may then decide whether the
fan should run to cool the CPU. This allows the system to
3. If the THERM-to-Fan Enable bit is set to 1, the fan will run
full-speed whenever THERM is asserted low. In this case,
both throttling and active cooling take place. If the high
temperature limit is programmed to a lower value than the
THERM limit, exceeding the high temperature limit will
assert INT low. Software could change the speed of the fan
depending on temperature readings. If the temperature con-
tinues to increase and exceeds the THERM limit, THERM
asserts low to throttle the CPU and the fan runs full-speed.
This allows the system to run in PERFORMANCE MODE,
where active cooling takes place and the CPU is only throttled
at high temperature.
Using the high temperature limit and the THERM limit in this
way allows the user to gain maximum performance from the system
by only slowing it down, should it be at a critical temperature.
Although the ADM1030 does not have a dedicated Interrupt
Mask Register, clearing the appropriate enable bits in Configu-
ration Register 2 will clear the appropriate interrupts and mask
out future interrupts on that channel. Disabling interrupt bits
will prevent out-of-limit conditions from generating an interrupt
or setting a bit in the Status Registers.
The THERM pin is an open-drain input/output pin. When used
as an output, it signals over-temperature conditions. When
asserted low as an output, the fan will be driven full-speed if the
THERM-to-Fan Enable bit is set to 1 (Bit 7 of Register 0x3F).
When THERM is pulled low as an input, the THERM bit (Bit 7)
of Status Register 2 is set to 1, and the fan is driven full-speed.
Note that the THERM-to-Fan Enable bit has no effect when-
ever THERM is used as an input. If THERM is pulled low as
an input, and the THERM-to-Fan Enable bit = 0, the fan will
still be driven full-speed. The THERM-to-Fan Enable bit only
affects the behavior of THERM when used as an output.
All out-of-limit conditions are flagged by status bits in Status
Registers 1 and 2 (0x02, 0x03). Bits 0 and 1 (Alarm Speed, Fan
Fault) of Status Register 1, once set, may be cleared by reading
Status Register 1. Once the Alarm Speed bit is cleared, this bit
will not be reasserted on the next monitoring cycle even if the
condition still persists. This bit may be reasserted only if the
fan is no longer at Alarm Speed. Bit 1 (Fan Fault) is set whenever
a fan tach failure is detected.
Once cleared, it will reassert on subsequent fan tach failures.
Bits 2 and 3 of Status Register 1 are the Remote Temperature
High and Low status bits. Exceeding the high or low temperature
limits for the external channel sets these status bits. Reading the
status register clears these bits. However, these bits will be reasserted
if the out-of limit condition still exists on the next monitoring
cycle. Bits 6 and 7 are the Local Temperature High and Low
status bits. These behave exactly the same as the Remote Temper-
ature High and Low status bits. Bit 4 of Status Register 1 indicates
that the Remote Temperature THERM limit has been exceeded.
This bit gets cleared on a read of Status Register 1 (see Figure 5).
Bit 5 indicates a Remote Diode Error. This bit will be a 1 if a
short or open is detected on the Remote Temperature channel
on power-up. If this bit is set to 1 on power-up, it cannot be
cleared. Bit 6 of Status Register 2 (0x03) indicates that the
Local THERM limit has been exceeded. This bit is cleared on a
read of Status Register 2. Bit 7 indicates that THERM has been
pulled low as an input. This bit can also be cleared on a read of
Status Register 2.
Figure 5. Operation of THERM and INT Signals
Figure 5 shows the interaction between INT and THERM.
Once a critical temperature THERM limit is exceeded, both
INT and THERM assert low. Reading the Status Registers
clears the interrupt and the INT pin goes high. However, the
THERM pin remains asserted until the measured temperature
falls 5C below the exceeded THERM limit. This feature can be
used to CPU throttle or drive a fan full-speed for maximum
cooling. Note, that the INT pin for that interrupt source is not
rearmed until the temperature has fallen below the THERM
limit –5C. This prevents unnecessary interrupts from tying up
valuable CPU resources.
The ADM1030 has four different modes of operation. These
modes determine the behavior of the system.
1. Automatic Fan Speed Control Mode.
2. Filtered Automatic Fan Speed Control Mode.
3. PWM Duty Cycle Select Mode (directly sets fan speed under
software control).
4. RPM Feedback Mode.
Direct download click here

Share Link : ADI
All Rights Reserved © 2014 - 2019 [ Privacy Policy ] [ Request Datasheet ] [ Contact Us ]