datasheetbank_Logo
Integrated circuits, Transistor, Semiconductors Search and Datasheet PDF Download Site

80C32E View Datasheet(PDF) - Philips Electronics

Part Name
Description
View to exact match
80C32E
Philips
Philips Electronics Philips
80C32E Datasheet PDF : 62 Pages
1 2 3 4 5 6 7 8 9 10 Next Last
Philips Semiconductors
CMOS single-chip 8-bit microcontrollers
Product specification
80C32/87C52
DIFFERENCES FROM THE 80C51
Special Function Registers
The special function register space is the same as the 80C51 except
that the 80C32/87C52 contains the additional special function
registers T2CON, RCAP2L, RCAP2H, TL2, and TH2. Since the
standard 80C51 on-chip functions are identical in the 8XC52, the
SFR locations, bit locations, and operation are likewise identical.
The only exceptions are in the interrupt mode and interrupt priority
SFRs (see Table 1).
Timer/Counters
In addition to timer/counters 0 and 1 of the 80C51, the 80C32/87C52
contains timer/counter 2. Like timers 0 and 1, timer 2 can operate as
either an event timer or as an event counter. This is selected by bit
C/T2 in the special function register T2CON (see Figure 1). It has
three operating modes: capture, auto-load, and baud rate generator,
which are selected by bits in the T2CON as shown in Table 2.
In the Capture Mode there are two options which are selected by bit
EXEN2 in T2CON. If EXEN2 = 0, then Timer 2 is a 16-bit timer or
counter which upon overflowing sets bit TF2, the Timer 2 overflow
bit, which can be used to generate an interrupt. If EXEN2 = 1, then
Timer 2 still does the above, but with the added feature that a 1-to-0
transition at external input T2EX causes the current value in the
Timer 2 registers, TL2 and TH2, to be captured into registers
RCAP2L and RCAP2H, respectively. (RCAP2L and RCAP2H are
new special function registers in the 80C52.) In addition, the
transition at T2EX causes bit EXF2 in T2CON to be set, and EXF2
like TF2 can generate an interrupt. The Capture Mode is illustrated
in Figure 2.
In the auto-reload mode, there are again two options, which are
selected by bit EXEN2 in T2CON. If EXEN2 = 0, then when Timer 2
rolls over it not only sets TF2 but also causes the Timer 2 registers
to be reloaded with the 16-bit value in registers RCAP2L and
RCAP2H, which are preset by software. If EXEN2 = 1, then Timer 2
still does the above, but with the added feature that a 1-to-0
transition at external input T2EX will also trigger the 16-bit reload
and set EXF2. The auto-reload mode is illustrated in Figure 3.
The baud rate generation mode is selected by RCLK = 1 and/or
TCLK = 1. It will be described in conjunction with the serial port.
Serial Port
The serial port of the 8XC52 is identical to that of the 80C51 except
that counter/timer 2 can be used to generate baud rates.
In the 8XC52, Timer 2 is selected as the baud rate generator by
setting TCLK and/or RCLK in T2CON (see Figure 1). Note that the
baud rate for transmit and receive can be simultaneously different.
Setting RCLK and/or TCLK puts Timer into its baud rate generator
mode, as shown in Figure 4.
The baud rate generator mode is similar to the auto-reload mode, in
that a rollover in TH2 causes the Timer 2 registers to be reloaded
with the 16-bit value in registers RCAP2H and RCAP2L, which are
preset by software.
Now, the baud rates in Modes 1 and 3 are determined by Timer 2’s
overflow rate as follows:
Modes
1,
3
Baud
Rate + Timer
2
Overflow
16
Rate
The timer can be configured for either “timer” or “counter” operation.
In the most typical applications, it is configured for “timer” operation
(C/T2 = 0). “Timer” operation is a little different for Timer 2 when it’s
being used as a baud rate generator. Normally, as a timer it would
increment every machine cycle (thus at 1/12 the oscillator
frequency). As a baud rate generator, however, it increments every
state time (thus at 1/2 the oscillator frequency). In that case the
baud rate is given by the formula:
Modes 1, 3 Baud Rate + 32
Oscillator Frequency
[65536 * (RCAP2H, RCAP2L)]
where (RCAP2H, RCAP2L) is the content of RCAP2H and RCAP2L
taken as a 16-bit unsigned integer.
(MSB)
TF2
EXF2 RCLK TCLK EXEN2 TR2
C/T2
(LSB)
CP/RL2
Symbol Position Name and Significance
TF2
EXF2
RCLK
TCLK
EXEN2
TR2
C/T2
CP/RL2
T2CON.7
T2CON.6
T2CON.5
T2CON.4
T2CON.3
T2CON.2
T2CON.1
T2CON.0
Timer 2 overflow flag set by a Timer 2 overflow and must be cleared by software. TF2 will not be set when either RCLK or TCLK = 1.
Timer 2 external flag set when either a capture or reload is caused by a negative transition on T2EX and EXEN2 = 1. When Timer 2
interrupt is enabled, EXF2 = 1 will cause the CPU to vector to the Timer 2 interrupt routine. EXF2 must be cleared by software.
Receive clock flag. When set, causes the serial port to use Timer 2 overflow pulses for its receive clock in modes 1 and 3. RCLK = 0
causes Timer 1 overflow to be used for the receive clock.
Transmit clock flag. When set, causes the serial port to use Timer 2 overflow pulses for its transmit clock in modes 1 and 3. TCLK = 0
causes Timer 1 overflows to be used for the transmit clock.
Timer 2 external enable flag. When set, allows a capture or reload to occur as a result of a negative transition on T2EX if Timer 2 is not
being used to clock the serial port. EXEN2 = 0 causes Timer 2 to ignore events at T2EX.
Start/stop control for Timer 2. A logic 1 starts the timer.
Timer or counter select. (Timer 2)
0 = Internal timer (OSC/12)
1 = External event counter (falling edge triggered).
Capture/Reload flag. When set, captures will occur on negative transitions at T2EX if EXEN2 = 1. When cleared, auto-reloads will
occur either with Timer 2 overflows or negative transitions at T2EX when EXEN2 = 1. When either RCLK = 1 or TCLK = 1, this bit is
ignored and the timer is forced to auto-reload on Timer 2 overflow.
Figure 1. Timer/Counter 2 (T2CON) Control Register
SU00065
1996 Aug 16
8
 

Share Link: 

datasheetbank.com [ Privacy Policy ] [ Request Datasheet ] [ Contact Us ]