datasheetbank_Logo     Integrated circuits, Transistor, Semiconductors Search and Datasheet PDF Download Site

80C32E View Datasheet(PDF) - Philips Electronics

Part NameDescriptionManufacturer
80C32E CMOS single-chip 8-bit microcontrollers Philips
Philips Electronics Philips
80C32E Datasheet PDF : 62 Pages
1 2 3 4 5 6 7 8 9 10 Next Last
Philips Semiconductors
CMOS single-chip 8-bit microcontrollers
Product specification
80C32/87C52
PIN DESCRIPTION
PIN NO.
MNEMONIC DIP LCC QFP TYPE NAME AND FUNCTION
VSS
20
22
16
I Ground: 0V reference.
VCC
40
44
38
I Power Supply: This is the power supply voltage for normal, idle, and power-down
operation.
P0.0–0.7
39–32 43–36 37–30 I/O Port 0: Port 0 is an open-drain, bidirectional I/O port. Port 0 pins that have 1s written to
them float and can be used as high-impedance inputs. Port 0 is also the multiplexed
low-order address and data bus during accesses to external program and data memory. In
this application, it uses strong internal pull-ups when emitting 1s. Port 0 also outputs the
code bytes during program verification in the 87C52. External pull-ups are required during
program verification.
P1.0–P1.7
1–8 2–9 40–44 I/O Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. Port 1 pins that have 1s
1–3
written to them are pulled high by the internal pull-ups and can be used as inputs. As
inputs, port 1 pins that are externally pulled low will source current because of the internal
pull-ups. (See DC Electrical Characteristics: IIL). Pins P1.0 and P1.1 also. Port 1 also
receives the low-order address byte during program memory verification. Port 1 also serves
alternate functions for timer 2:
1
2
40
I T2 (P1.0): Timer/counter 2 external count input.
2
3
41
I T2EX (P1.1): Timer/counter 2 trigger input.
P2.0–P2.7
21–28 24–31 18–25 I/O Port 2: Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2 pins that have 1s
written to them are pulled high by the internal pull-ups and can be used as inputs. As
inputs, port 2 pins that are externally being pulled low will source current because of the
internal pull-ups. (See DC Electrical Characteristics: IIL). Port 2 emits the high-order
address byte during fetches from external program memory and during accesses to
external data memory that use 16-bit addresses (MOVX @DPTR). In this application, it
uses strong internal pull-ups when emitting 1s. During accesses to external data memory
that use 8-bit addresses (MOV @Ri), port 2 emits the contents of the P2 special function
register.
P3.0–P3.7
10–17 11,
5,
13–19 7–13
10
11
5
11
13
7
12
14
8
13
15
9
14
16
10
15
17
11
16
18
12
17
19
13
I/O Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins that have 1s
written to them are pulled high by the internal pull-ups and can be used as inputs. As
inputs, port 3 pins that are externally being pulled low will source current because of the
pull-ups. (See DC Electrical Characteristics: IIL). Port 3 also serves the special features of
the 80C51 family, as listed below:
I RxD (P3.0): Serial input port
O TxD (P3.1): Serial output port
I INT0 (P3.2): External interrupt
I INT1 (P3.3): External interrupt
I T0 (P3.4): Timer 0 external input
I T1 (P3.5): Timer 1 external input
O WR (P3.6): External data memory write strobe
O RD (P3.7): External data memory read strobe
RST
9
10
4
I Reset: A high on this pin for two machine cycles while the oscillator is running, resets the
device. An internal diffused resistor to VSS permits a power-on reset using only an external
capacitor to VCC.
ALE/PROG 30
33
27 I/O Address Latch Enable/Program Pulse: Output pulse for latching the low byte of the
address during an access to external memory. In normal operation, ALE is emitted at a
constant rate of 1/6 the oscillator frequency, and can be used for external timing or clocking.
Note that one ALE pulse is skipped during each access to external data memory. This pin is
also the program pulse input (PROG) during EPROM programming.
PSEN
29
32
26
O Program Store Enable: The read strobe to external program memory. When the device is
executing code from the external program memory, PSEN is activated twice each machine
cycle, except that two PSEN activations are skipped during each access to external data
memory. PSEN is not activated during fetches from internal program memory.
EA/VPP
XTAL1
31
35
29
19
21
15
I External Access Enable/Programming Supply Voltage: EA must be externally held low
to enable the device to fetch code from external program memory locations 0000H to
1FFFH. If EA is held high, the device executes from internal program memory unless the
program counter contains an address greater than 1FFFH. This pin also receives the
12.75V programming supply voltage (VPP) during EPROM programming.
I Crystal 1: Input to the inverting oscillator amplifier and input to the internal clock generator
circuits.
XTAL2
18
20
14
O Crystal 2: Output from the inverting oscillator amplifier.
1996 Aug 16
7
Direct download click here

 

Share Link : 

All Rights Reserved © datasheetbank.com 2014 - 2020 [ Privacy Policy ] [ Request Datasheet ] [ Contact Us ]