datasheetbank_Logo
Integrated circuits, Transistor, Semiconductors Search and Datasheet PDF Download Site

FAN4803CS-2 View Datasheet(PDF) - Fairchild Semiconductor

Part Name
Description
View to exact match
FAN4803CS-2
Fairchild
Fairchild Semiconductor Fairchild
FAN4803CS-2 Datasheet PDF : 12 Pages
1 2 3 4 5 6 7 8 9 10 Next Last
PRODUCT SPECIFICATION
FAN4803
GND
GND is the return point for all circuits associated with
this part. Note: a high-quality, low impedance ground is
critical to the proper operation of the IC. High frequency
grounding techniques should be used.
Power Factor Correction
Power factor correction makes a nonlinear load look like a
resistive load to the AC line. For a resistor, the current drawn
from the line is in phase with, and proportional to, the line
voltage. This is defined as a unity power factor is (one). A
common class of nonlinear load is the input of a most power
supplies, which use a bridge rectifier and capacitive input fil-
ter fed from the line. Peak-charging effect, which occurs on
the input filter capacitor in such a supply, causes brief high-
amplitude pulses of current to flow from the power line,
rather than a sinusoidal current in phase with the line volt-
age. Such a supply presents a power factor to the line of less
than one (another way to state this is that it causes significant
current harmonics to appear at its input). If the input current
drawn by such a supply (or any other nonlinear load) can be
made to follow the input voltage in instantaneous amplitude,
it will appear resistive to the AC line and a unity power factor
will be achieved.
To hold the input current draw of a device drawing power
from the AC line in phase with, and proportional to, the input
voltage, a way must be found to prevent that device from
loading the line except in proportion to the instantaneous line
voltage. The PFC section of the FAN4803 uses a boost-
mode DC-DC converter to accomplish this. The input to the
converter is the full wave rectified AC line voltage. No filter-
ing is applied following the bridge rectifier, so the input
voltage to the boost converter ranges, at twice line frequency,
from zero volts to the peak value of the AC input and back to
zero. By forcing the boost converter to meet two simulta-
neous conditions, it is possible to ensure that the current that
the converter draws from the power line matches the instan-
taneous line voltage. One of these conditions is that the
output voltage of the boost converter must be set higher than
the peak value of the line voltage. A commonly used value is
385VDC, to allow for a high line of 270VACRMS. The other
condition is that the current that the converter is allowed to
draw from the line at any given instant must be proportional
to the line voltage.
Since the boost converter topology in the FAN4803 PFC is
of the current-averaging type, no slope compensation is
required.
Leading/Trailing Modulation
Conventional Pulse Width Modulation (PWM) techniques
employ trailing edge modulation in which the switch will
turn ON right after the trailing edge of the system clock.
The error amplifier output voltage is then compared with the
modulating ramp. When the modulating ramp reaches the
level of the error amplifier output voltage, the switch will be
turned OFF. When the switch is ON, the inductor current will
ramp up. The effective duty cycle of the trailing edge modu-
lation is determined during the ON time of the switch. Figure
2 shows a typical trailing edge control scheme.
L1
I1
+
VIN
DC
SW2 I2 I3
I4
SW1
RL
C1
REF +EAU3
RAMP
OSC
CLK
U4
+
U1
DFF
RQ
D U2
Q
CLK
RAMP
VEAO
VSW1
TIME
TIME
Figure 2. Typical Trailing Edge Control Scheme.
REV. 1.2.2 5/20/02
5
 

Share Link: 

datasheetbank.com [ Privacy Policy ] [ Request Datasheet ] [ Contact Us ]