datasheetbank_Logo
Integrated circuits, Transistor, Semiconductors Search and Datasheet PDF Download Site

MAX3224E View Datasheet(PDF) - Maxim Integrated

Part Name
Description
View to exact match
MAX3224E Datasheet PDF : 21 Pages
First Prev 11 12 13 14 15 16 17 18 19 20
MAX3224E/MAX3225E/
MAX3226E/MAX3227E/MAX3244E/MAX3245E
±15kV ESD-Protected, 1µA, 1Mbps 3.0V to 5.5V,
RS-232 Transceivers with AutoShutdown Plus
IEC 1000-4-2
The IEC 1000-4-2 standard covers ESD testing and per-
formance of finished equipment; it does not specifically
refer to integrated circuits. The MAX3224E–MAX3227E,
MAX3244E/MAX3245E help you design equipment that
meets Level 4 (the highest level) of IEC 1000-4-2, with-
out the need for additional ESD-protection components.
The major difference between tests done using the
Human Body Model and IEC 1000-4-2 is higher peak
current in IEC 1000-4-2, because series resistance is
lower in the IEC 1000-4-2 model. Hence, the ESD with-
stand voltage measured to IEC 1000-4-2 is generally
lower than that measured using the Human Body
Model. Figure 7a shows the IEC 1000-4-2 model and
Figure 7b shows the current waveform for the 8kV, IEC
1000-4-2, Level 4, ESD Contact-Discharge Method.
The Air-Gap Method involves approaching the device
with a charged probe. The Contact-Discharge Method
connects the probe to the device before the probe is
energized.
Machine Model
The Machine Model for ESD tests all pins using a
200pF storage capacitor and zero discharge resis-
tance. Its objective is to emulate the stress caused by
contact that occurs with handling and assembly during
manufacturing. Of course, all pins require this protec-
tion during manufacturing, not just RS-232 inputs and
outputs. Therefore, after PC board assembly, the
Machine Model is less relevant to I/O ports.
__________Applications Information
Capacitor Selection
The capacitor type used for C1–C4 is not critical for
proper operation; polarized or nonpolarized capacitors
Table 3. Required Minimum Capacitance
Values
VCC
(V)
3.0 to 3.6
3.15 to 3.6
4.5 to 5.5
3.0 to 5.5
C1, CBYPASS
(µF)
0.22
0.1
0.047
0.22
C2, C3, C4
(µF)
0.22
0.1
0.33
1
5V/div
0
FORCEON = FORCEOFF
T1OUT
2V/div
0
5V/div
0
VCC = 3.3V
C1–C4 = 0.1μF
5μs/div
T2OUT
READY
Figure 8. Transmitter Outputs when Exiting Shutdown or
Powering Up
can be used. The charge pump requires 0.1µF capaci-
tors for 3.3V operation. For other supply voltages, see
Table 3 for required capacitor values. Do not use val-
ues smaller than those listed in Table 3. Increasing the
capacitor values (e.g., by a factor of 2) reduces ripple
on the transmitter outputs and slightly reduces power
consumption. C2, C3, and C4 can be increased without
changing C1’s value. However, do not increase C1
without also increasing the values of C2, C3, C4,
and CBYPASS, to maintain the proper ratios (C1 to
the other capacitors).
When using the minimum required capacitor values,
make sure the capacitor value does not degrade
excessively with temperature. If in doubt, use capaci-
tors with a larger nominal value. The capacitor’s equiv-
alent series resistance (ESR), which usually rises at low
temperatures, influences the amount of ripple on V+
and V-.
Power-Supply Decoupling
In most circumstances, a 0.1µF VCC bypass capacitor
is adequate. In applications that are sensitive to power-
supply noise, use a capacitor of the same value as
charge-pump capacitor C1. Connect bypass capaci-
tors as close to the IC as possible.
Transmitter Outputs
when Exiting Shutdown
Figure 8 shows two transmitter outputs when exiting
shutdown mode. As they become active, the two trans-
mitter outputs are shown going to opposite RS-232 lev-
els (one transmitter input is high, the other is low). Each
14
Maxim Integrated
 

Share Link: 

datasheetbank.com [ Privacy Policy ] [ Request Datasheet ] [ Contact Us ]